ارزیابی مقایسهای ادراک بصری محیطهای معماری در فناوریهای رابط کاربری انسان و رایانه
محورهای موضوعی :شاهین بهادری 1 , عاصم شعرباف 2 *
1 - واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 - استادیار دانشکده معماری - گروه فناوری دیجیتال، دانشگاه هنر اسلامی تبریز، ایران.
کلید واژه: ادراک بصری, محیط معماری, محیط درون رایانه¬ای, واقعیت مجازی, واقعیت افزوده.,
چکیده مقاله :
ادراک بصری محیطهای معماری، نیازمند درک عمیقی از مفاهیمی است که کسب آن تنها با روشهای سنتی، چالشبرانگیز است. ازاینرو، فناوری رابط کاربری انسان و رایانه، میتواند تسهیلگری کارا در این زمینه باشد. ازجمله مهم¬ترین روش¬های تجربه فضای معماری، می¬توان به محیط مجازی درون رایانه¬، واقعیت مجازی و واقعیت افزوده، اشاره نمود. هدف از این مقاله، سنجش کیفیت ادراک بصری محیط معماری با استفاده از روشهای نوین دیجیتالی - رایانهای است. برای دستیابی به اهداف موردنظر، از روش تحقیق توصیفی - تحلیلی استفاده شده است. بر اساس روش کتابخانهای، در فرایند ادراک بصری محیط معماری، شاخصهای تأثیرگذار در دو سطح مؤلفه شناختی و تفسیری و هر مؤلفه دارای پنج زیرمؤلفه استخراج گردید. طراحی پرسشنامه از نوع مقیاس لیکرت پنجگزینهای با جامعه آماری 100 نفر است. از نرمافزار اس.پی.اس.اس جهت تحلیل دادههای پرسشنامه استفاده گردیده و پایایی سؤالات پرسشنامه بر اساس ضریب آلفای کرونباخ 854/0 تأیید میگردد. بر اساس نتایج بهدستآمده، واقعیت مجازی بیشترین تأثیر را بر درک بصری محیط معماری در مؤلفه تفسیری دارد. واقعیت افزوده و فضای درون رایانهای از نظر مقبولیت مخاطبان در رتبه بعدی هستند. فضای درون رایانهای و واقعیت مجازی عملکرد برتر را در بخش شناختی نشان دادند، درحالیکه مخاطبان، از واقعیت افزوده استقبال کمتری کردند.
Visual perception of architectural environments requires a deep understanding of concepts that are challenging to acquire only through traditional methods. Therefore, human-computer interaction (HCI) technologies can be used in this field. Among the most essential methods of experiencing architectural space are the virtual environment within the computer, virtual reality, and augmented reality. The purpose of this article is to measure the quality of visual perception of architectural environments using modern digital and computer-based methods. A descriptive-analytical research methodology was employed to achieve the desired goals. The visual perception of the architectural environment was analyzed to identify influential indicators at the cognitive and interpretative component levels. Each component was subdivided into five sub-components according to the literature review, which thoroughly examines all available literature and theories to direct the research. A Likert scale survey questionnaire was used with a statistical sample of 100 people. The questionnaire items were assessed for reliability using Cronbach's alpha coefficient of 0.854, and the questionnaire data were analyzed using SPSS software. Based on the obtained results, virtual reality has the most significant effect on the visual understanding of the architectural environment in the interpretation component. Augmented reality and computer-based environments are next in terms of audience acceptance. Computer-based environments and virtual reality showed superior performance in the cognitive section, while audiences were less receptive to augmented reality.
1- حبیبپورگتابی، کرم؛. صفریشالی، رضا(1394). راهنمای جامع کاربرد SPSS در تحقیقات پیمایشی (تحلیل دادههای کمی). تهران: لویه.
2- Alihodžić, R., & Kurtović-Folić, N. (2010). Phenomenology of perception and memorizing contemporary architectural forms. Facta universitatis-series: Architecture and Civil Engineering, 8(4), 425-439.
3- Alvarado, R. G., & Maver, T. (1999). Virtual reality in architectural education: defining possibilities. Acadia Quarterly, 18(4), 7-9.
4- Amini, A. A., & Adibzadeh, B. (2020). The role of visual preferences in architecture views. Journal of Architecture and Urbanism, 44(2), 122-127. doi:10.3846/jau.2020.12582
5- Azarby, S., & Rice, A. (2022). Understanding the effects of virtual reality system usage on spatial perception: The Potential impacts of immersive virtual reality on spatial design decisions. Sustainability, 14(16), 10326. doi:10.3390/su141610326
6- Banerjee, S., Chowdhury, A., & Yein, N. (2023). User experience evaluation of a virtual reality Tool used for 3D modelling in Industrial Design Education: a study in the Indian context. Designs, 7(5), 105. doi:10.3390/designs7050105
7- Bin Uzayr, S. (2022). Mastering Ubuntu: A Beginner's Guide. CRC Press.
8- Breen, J. (2004). Changing Roles for (Multi) Media Tools in Design. Architecture in the Network Society, 529-539.
9- Christou, C. (2010). Virtual reality in education. In Affective, interactive and cognitive methods for e-learning design: creating an optimal education experience (pp. 228-243). IGI Global. doi:10.4018/978-1-60566-940-3.ch012
10- Dana, P. O. P. (2013). Space Perception and Its Implication in Architectural Design. Acta Technica Napocensis: Civil Engineering & Architecture, 56(2), 211-221.
11- Doyle, S., & Senske, N. (2017). Between design and digital: Bridging the gaps in architectural education. Charrette, 4(1), 101-116.
12- Gębczyńska-Janowicz, A. (2020). Virtual reality technology in architectural education. World Transactions on Engineering and Technology Education, 18, 24-28.
13- Gomez-Tone, H. C., Alpaca Chávez, M., Vásquez Samalvides, L., & Martin-Gutierrez, J. (2022). Introducing immersive virtual reality in the initial phases of the design process—case study: freshmen designing ephemeral architecture. Buildings, 12(5), 518. doi:10.3390/buildings12050518
14- Groner, R., Koga, K., & Tsuji, K. (2004). Visual Perception and Perceptual Processing in Real and Virtual Environments. Swiss Journal of Psychology/Schweizerische Zeitschrift für Psychologie/Revue Suisse de Psychologie, 63(3), 139.
15- Hardin, R., Bhargava, A., Bothner, C., Browne, K., Kusano, S., Golrokhian, A., ... & Agrawal, A. (2016). Towards a revolution in sustainability education: Vision, architecture, and assessment in a case-based approach. World Development Perspectives, 1, 58-63. doi:10.1016/j.wdp.2016.05.006
16- Hidajat, F. A. (2023). Augmented reality applications for mathematical creativity: a systematic review. Journal of Computers in Education, 1-50. doi:10.1007/s40692-023-00287-7
17- Kim, D. Y. (2019). A design methodology using prototyping based on the digital-physical models in the architectural design process. Sustainability, 11(16), 4416. doi:10.3390/su11164416
18- Kotnik, T. (2010). Digital architectural design as exploration of computable functions. International journal of architectural computing, 8(1), 1-16. doi:10.1260/1478-0771.8.1.1
19- Kreutzberg, A. (2014, September). New virtual reality for architectural investigations. In Fusion-Proceedings of the 32nd eCAADe Conference (Vol. 1, pp. 253-260).
20- Li, S. (2021). Realization of Virtual Animation Design of Ancient Architecture Based on Unity 3D. In Journal of Physics: Conference Series (Vol. 2037, No. 1). doi:10.1088/1742-6596/2037/1/012089
21- Mikhailov, S., Mikhailova, A., Nadyrshine, N., & Nadyrshine, L. (2020, July). BIM-technologies and digital modeling in educational architectural design. In IOP Conference Series: Materials Science and Engineering (Vol. 890, No. 1, p. 012168). IOP Publishing. doi:10.1088/1757-899X/890/1/012168
22- Milovanovic, J., Moreau, G., Siret, D., & Miguet, F. (2017, July). Virtual and augmented reality in architectural design and education. In 17th international conference, CAAD futures 2017.
23- Nguyen, V. T., & Dang, T. (2017, October). Setting up virtual reality and augmented reality learning environment in unity. In 2017 IEEE International symposium on mixed and augmented reality (ISMAR-Adjunct) (pp. 315-320). IEEE. doi:10.1109/ISMAR-Adjunct.2017.97
24- Paliou, E. (2018). Visual perception in past built environments: Theoretical and procedural issues in the archaeological application of three-dimensional visibility analysis. Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research, 65-80. doi:10.1007/978-3-319-25316-9_5
25- Pamungkas, L. S., Meytasari, C., & Trieddiantoro, H. (2018). Virtual Reality As A Spatial Experience For Architecture Design: A Study of Effectiveness for Architecture Students. In SHS Web of Conferences (Vol. 41, p. 05005). EDP Sciences. doi:10.1051/shsconf/20184105005
26- Pillai N, V. (2020). Reliability, validity and Uni-Dimensionality: a primer. mpra.ub,uni-muenchen.de. Retrieved from https://mpra.ub.uni-muenchen.de/101714/.
27- Radanliev, P., De Roure, D., Nicolescu, R., & Huth, M. (2019). A reference architecture for integrating the Industrial Internet of Things in the Industry 4.0. University of Oxford combined working papers and project reports prepared for the PETRAS National Centre of Excellence and the Cisco Research Centre. doi:org/10.13140/RG, 2(26854.47686)
28- Redondo, E., Navarro, I., Sánchez, A., & Fonseca, D. (2011). Visual interfaces and user experience: augmented reality for architectural education: one study case and work in progress. In Digital Information and Communication Technology and Its Applications: International Conference, DICTAP 2011, Dijon, France, June 21-23, 2011. Proceedings, Part I (pp. 355-367). Springer Berlin Heidelberg. doi:10.1007/978-3-642-21984-9_31
29- Schwab, K. (2017). The fourth industrial revolution.Currency. Penguin Books Limited. doi:9780241980538
30- Soranzo, A., & Wilson, C. (2014). Virtual environments in visual perception: applications and challenges.
31- Sørensen, S. S. (2013). The development of augmented reality as a tool in architectural and urban design. NA, 19(4). 25-32.
32- Soto, F. A., & Wasserman, E. A. (2010). Comparative vision science: Seeing eye to eye?. Comparative cognition & behavior reviews, 5, 148. doi:10.3819/ccbr.2010.50011
33- Szalapaj, P. (2005). The Digital Design Process in Contemporary Architectural Practice. In Proc. Of the 23rd eCAADe Conf. on Digital Design, eds. JP Duarte, G. Ducla-Soares and AZ Sampaio (pp. 751-759).
34- Tepavčević, Bojan. 2017. “Design thinking models for architectural education.” The Journal of Public Space 2 (3): 67-72.
35- Usman, M., Haworth, B., Berseth, G., Kapadia, M., & Faloutsos, P. (2017, July). Understanding spatial perception and visual modes in the review of architectural designs. In proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 1-2). doi:10.1145/3099564.3108164
36- Vegetti, M. (2022). Phenomenology of space and virtual reality. An experimental course for students in architecture. AN-ICON. Studies in Environmental Images [ISSN 2785-7433], 1(II). doi:10.54103/ai/18166
37- Wang, X. (2009). Augmented reality in architecture and design: potentials and challenges for application. International journal of architectural computing, 7(2), 309-326. doi:10.1260/147807709788921985
38- Yates, R. D., Sun, Y., Brown, D. R., Kaul, S. K., Modiano, E., & Ulukus, S. (2021). Age of information: An introduction and survey. IEEE Journal on Selected Areas in Communications, 39(5), 1183-1210. doi:10.1109/JSAC.2021.3065072
39- Yildirim, T., & Yavuz, A. O. (2012). Comparison of traditional and digital visualization technologies in architectural design education. Procedia-Social and Behavioral Sciences, 51, 69-73. doi:10.1016/j.sbspro.2012.08.120
40- Zhu, Z. T., Yu, M. H., & Riezebos, P. (2016). A research framework of smart education. Smart learning environments, 3, 1-17. doi:10.1186/s40561-016-0026-2